
7 AAO94 698 ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND W-ETC F/6 4/2 -
EVALUATION OF THE ENVIRONMENTAL INSTRUMENTS. INCORPORAT~ SERE--T(U)
SEP 80 W J VECHIONE

UNCLASSIFIED ERADCO/ASL-TR-0067uuulnuunll
MhMhmhhhhhMhuE

*ENOMONEEIIIID



p.-

ASL-TR- t67 JAD

-- / .. . ,eports Control Symbol
1366

/r EVALUATION OF THE NVIRONMENTAL INSTRUMENTS,

INCORPORATED SERIES 200 DUAL
COMPONENT WIND SET..

-SEIFEMBER" 198 " ..

By

W.JvECHIONE

'O e,

Approved for public release; distribution unlimited

UUS Army Electronics Research and Development Command

ATMOSPHERIC SCIENCES LABORATORY
White Sands Missile Range, NM 88002

81 2 10 029



NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.



SECURITY CLASSIFICATION OF THIS PAGE ("en Date Entered)
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT DOCUMETATIOBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO, 3 RECIPI.TS CATALOG NUMBER

ASL-TR-O067 5__-Y6
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

EVALUATION OF THE ENVIRONMENTAL INSTRUMENTS, R&D Technical Report
INCORPORATED SERIES 200 DUAL COMPONENT WIND SET

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(&)

W. J. Vechione

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002

QA Tac N- 1F263741D158
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Electronics Research September 1980

and Development Command 13. NJMBEROF PAGES

A l MDhiMFl 27R8 39
14. MONI'fORIIG AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

5aS"L)ECNM/TS FW A T ON/ DOWN GRA DIN G
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere, side if necessary and Identify by block number)

Hot wire anemometer
Crosswinds
Pressure
Temperature

20. ABSTRACT (iContiue m res.. old It necoo.wer d Identify by block number)

Tests of atmospheric parameter measurements using the ElI Series 200 Dual
Component Wind Set with integral pressure and temperature sensors were made
during the period of May 1977 through March 1978. These tests included labo-
ratory comparison, wind tunnel, and field operation tests. Data collected
with the sensor were compared to calibrated standards. Presented in this
report are all tabulated and graphic representation as well as field operation
results. The results of the test show the systems relative comparison with

DD , FON 1473 EOT1Os OF I MOV 6 S IS OBSOLETEJ ,AN r

SECURITY CLASSIFICATION OF THIS PAGE (WIt.. De. Entered)



SECURITY CLASSIFICATION OF THIS PAGE(Whea Date Entered)

20. ABSTRACT (cont)

the calibrated standards of temperature and pressure. Wind measurements became
more comparable with increasing windspeeds. A method of utilizing the entire
windspeed capability range of the sensor is proposed.

Access on For
"-NTi1S C " 2T -~ ,, _-

DTI T ,'

S AI

SECURITY CLASSIFICATION OF THIS PAOEf~ihen Data Erntered)



CONTENTS

I. INTRODUCTION ........................................................ 5

2. TEST OBJECTIVES ..................................................... 5

3. SYSTEM DESCRIPTION AND OPERATIONAL THEORY ........................... 7

3.1 Sensors ........................................................ 7
3.2 Probe Operation ................................................ 7

3.2.1 Determination of Wind Direction ......................... 9
3.2.2 Pressure ................................................ 10
3.2.3 Temperature ............................................. 11
3.2.4 Electronics Pack ........................................ 11

3.2.4.1 Power Section .................................. 11
3.2.4.2 Wind Card ...................................... 11

4. TEST SUPPORT ........................................................ 12

4.1 Meteorological Optical Measurement System ...................... 12
4.2 WSMR Calibration Laboratory and Wind Tunnel Facility ........... 12

5. TEST DESCRIPTION .................................................... 13

5.1 Laboratory ..................................................... 13
5.2 Setup for Field Comparisons .................................... 13

6. DATA COLLECTION AND RESULTS ......................................... 13

6.1 Field Test Data ................................................ 13
6.2 Laboratory/Wind Tunnel Data .................................... 14

6.2.1 Pressure ................................................ 14
6.2.2 Temperature ............................................. 15
6.2.3 Winds ................................................... 15

6.3 Results of Data Analysis ....................................... 15
6.3.1 Windspeed Tests ......................................... 15
6.3.2 Pressure Tests .......................................... 16
6.3.3 Temperature Tests ....................................... 17
6.3.4 Field Wind Measurements ................................. 17

7. CONCLUSIONS ........................................................ 17

APPENDIX A - DATA FIGURES ............................................... 19

APPENDIX B - DAILY WEATHER PARAMETERS FEBRUARY 1980 ..................... 39

3



1. INTRODUCTION
The state of the atmosphere in an area of tactical operations affects Army
operations within that area. When commanders and their staff cannot obtain
current localized weather information from remote areas of the zone of opera-
tions, they are limited in acquiring vital information necessary for opera-
tional planning and execution. A system of unmanned portable automatic
weather stations is required to satisfy the need to supply the information for
day-to-day tactical operations and long-range operations planning.

A system was designed as an experimental prototype and subsequently qualified
for advanced development planning by the Atmospheric Sciences Laboratory
(ASL). This system measured windspeed, wind direction, atmospheric pressure,
temperature, and relative humidity. However, the wind sensors used in the
experimental prototype were modified standards, with mechanically active
(moving) wind sensor elements, and one tactical requirement demanded that the
sensor elements be mechanically passive.

After evaluation of different types of sensors that could potentially apply
for this application, the Eli Series 200 Dual Component Wind Set with integral
pressure and temperature sensing was chosen for applications testing. One set
was procured for evaluation as a possible sensor package for the advanced
deveropment system.

The series 200 wind component system (figure 1) is a hot wire anemometer
device with the sensor head containing the various sensor components packaqed
in a wire-shielded enclosure and the various linearization and control cir-
cuitry housed in a separate enclosure. Power requirement is 28 V dc.

Results of collected data are presented in this report, with an evaluation and
analysis that determine the accuracy, reliability, and applicability of the
series 200 sensor.

The systen was subjected to controlled environmental testing at the White
Sands Missile Range (WSMR) calibration laboratory facility for pressure and
temperature tests, and at the ASL wind tunnel facility for wind measurenent
tests. Also, during February to April 1978, the instrument was tested at
Biggs Optical Range (BOR), Fort Bliss, Texas, in a field environment.

2. TEST OBJECTIVES

Several remote meteorological sensor systems have been developed and placed
into operation within the last 10 years. A number of these systems were
evaluated for tactical army use, but none possessed all the necessary charac-
teristics. Recurring noncompliance was found in the sensor subsystems in
particular. The user representative of the tactical army indicated that a
mechanically passive sensor system was required, and the most promising sensor
type satisfying this requirement was the hot wire or hot film anenometer type
sensors. The system tested and reported on herein was determined to best meet
the criteria of sensor requirements.
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The objectives of the series of tests performed on the series 200 wind set
were:

a. Determine the actual capability of the sensor system in accuracy of
measurements.

b. By operating the system in a field environment, determine the ease or
difficulty of operation setup and use, and compare operation with research
grade colocated systems.

c. Contribute to the data base for continued remote meteorological

sensor development to satisfy stated requirements.

3. SYSTEM DESCRIPTION AND OPERATIONAL THEORY

3.1 Sensors

The ElI Series 200 Dual Component Wind Set (figures 1 and 2) provides the
measurement of two 90-degree components of windspeed, ambient pressure, and
barometric pressure. The wind components are measured by two pairs of heated
resistive sensing elements, placed at right angles to each other in the hori-
zontal plane. The outputs of these elements are processed in a manner that
yields sine and cosine functions of the wind vector blowing against the sens-
ing elements.

Ambient temperature is measured by a platinum resistance temperature sensor
which exhibits a resistance of approximately 200 ohms at OC and is calibrated
over a range of -700C to +400C.

Atmospheric pressure is measured with a 0 to 15 psia pressure transducer
capped by a four-port cap to provide stagnant air at the transducer input
port. The electronics linearize the output between 9.8 and 15.7 psia
(corresponding to 20 to 32 i6ches of mercury).

3.2 Probe Operation'

Each wind component is measured by a film resistance sensor constructed of two
closely spaced wire elements. These elements are SUDDorted in a manner which
provides thermal isolation between the elements so as to determine instanta-
neous windspeed and wind direction. The pair is continuously joined alono
their length, and one element serves as a leadinq wire. Flow between the
elements is prevented by the bridginq material. Their cross-sectional area
(1.4 mm) is much smaller than their lenqth (31 mm). Each element consists of
a ceramic substrate supporting a metallic film which is in turn protected by a
alazed fused silica coating. The metallic film is stable and has a hiqh
positive temperature coefficient of resistance. Wires are attached to hoth
ends of the elements which then form two series resistances in one arm of a

'Description and theory of operation for the dual axis, press ire and
temperature instrument, Series 200, Model 255, Environmental Instruments,
Incorporated, 4 Mercer Road, Natick, MA 07760
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Wheatstone bridge. The wires are electrically excited so that total resis-
tance is constantly maintained by a closed loop feedback amplifier. The
potential at the junction of the two series connected resistive elements is
sensed to derive the sign (+ or -), which indicates the wind direction across
the element pair. The reference arm of the Wheatstone bridge incorporates a
temperature sensor whose temperature coefficient is adjusted to compensate the
wind sensing element pair which is best described as a heat loss mass flow
sensor and is operated at a constant temperature elevation above sensed
ambient temperature.

The total voltage appearing across the sensing element pair is used to indi-
cate Pv, mass flow. The windspeed output signal is nonlinear and contains a
constant zero velocity self-heating signal, a fourth root term as a function
of airflow velocity and turbulence components which result from gustiness in
the airflow. The signal conditioning electronics within the probe are used to
zero the output for zero wind conditions and set the full-scale output signal
for each axis.

A comparator is connected across the sensing element pair to detect the elec-
trical change of the sensing element midpoint as the wind shifts in direction
on either side of the sensing element air. The comparator output is connected
to an external pack which contains linearization circuitry and a polarity
output amplifier whose output sign switches positive or negative as the wind
shifts direction.

In general the final output is in the form of

Pa
P--= Vw Csine a for the crosswind axis,

r

and

PF=a Vw Sine a for the headwind axis,

r

where Pa is the ambient air density, Pr is reference density at standard
conditions, Vw is the windspeed, and (x is the azimuth angle of the wind
vector. A discussion of this wind direction determination follows.

3.2.1 Determination of Wind Direction

The probe is constructed with two paired coplanar axial elements sensor
wires. Within each sensor pair, one wire element is biased positively and one
negatively. The wires exposed to horizontal windflow will exhibit a positive
output when the positively based wire is "upstream" and allow a neqative
output when the negatively biased wire elements is upstream. The theory
requires the elements to be maintained at a steady heat state. Therefore, in
the presence of wind, cooling by its passage, the elements require greater
current and voltage to the upstream wire. This voltage rise is proportional
to the output. Since the probe is fixed, any wind other than from 90 degrees
(i.e., directly perpendicular to the wire pair) will result in a vector of
wind impinging the sensor pair. Thus, using only one pair, the angle of wind
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vector will result in two force components Wv Cos 0 and Wv Sin 13. However,
the force component values from 0 in the first quadrant or second quadrant are
equivalent, i.e.,

Sin I Wv

Wv2

NX IWv Cos q

Wire Pair X

Winds Wv and Wv2 yield equal output from wire pair X
(i.e., no direction is discernible)

The value of concern is WV Cos 0 , because Wv Sin a is parallel to the wire
elements and impinges only the diametric cross section of the wire pair, not
the main perpendicular area. Therefore, the wind velocity of interest to this
pair of wire elements is essentially equal to W Cos 0. By positioning a
second set of wire elements perpendicular to the original pair, biased in the
same manner, the actual direction can be derived. Plus bias is on the right
element of the vertical pair and the top elements of the horizontal pair as
shown below: +

QI' QI

Q IIl Q IV

Q I

Therefore, for finding directivity, a wind from quadrant I will result in a
positive output from both elements. In contrast, a wind from quadrant III
will result in negative outputs from both elements.

3.2.2 Pressure

The pressure transducer is a hybrid linear silicon device which consists of a
diaphragm and pressure reference, piezoresistive sensor, signal discriminator,
voltage reference, and amplifier. It is physically small, and the port is
located under a vented structure mounted below the two wind sensing
elements. The range of interest for the meteorological sensor is from 20.00
inches (9.824 psi) to 32.00 inches (15.7184 psi) of mercury.
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3.2.3 Temperature

The ambient temperature transducer is a platinum resistance spiral contained
within an aluminum oxide shell. It is mounted on two posts alongside the
pressure port. The temperature transducer is a device whose resistance is
characterized as a function of temperature. Temperature and pressure signal
conditioning amplifiers are contained within the probe and a third amplifier
is used to provide temperature compensation of the pressure output by the
temperature output signal. These conditioning amplifiers provide scaling and
offset corrections for both the temperature and pressure output signals to the
external electronics pack.

3.2.4 Electronics Pack

The power supply section, wind sensor excitation circuits, and wind output
signal processing circuits are contained within a sealed aluminum housing.

3.2.4.1 Power Section. DC power input is regulated to +19 V for the wind
axis bridge derive potential and +10 V switching regulator. Reverse voltage
and overvoltaqe protection are inherent in the design. Inversion of the +10 V
to a comparator circuit yields -17.8 V output, which, along with the +19 V,
supplies a dual tracking voltage regulator for a +15 V supply to the opera-
tional amplifiers of the subsystem. Tolerance of wide input voltage swings is
integral, and at the low end integrity of the -15 V output line is maintained.

3.2.4.2 Wind Card. Both axes, headwind and crosswind, use similar wind
cards. The headwind cards are interchangeable, and the crosswind cards differ
only in the resistance component values used in function generator circuit for
linearization of the probe signals.

The nonlinear probe signal for each axis is applied to a function generator
circuit whose gain transfer characteristic is inverse to the probe signal
transfer function. The circuit is temperature compensated so that the result-
ing function generator output is temperature stabilized. The linearizer
output is unipolar, 0 to 10 V full-scale, for all directions of wind input.
The linearized wind signal feeds a switchable gain amplifier controlled by a
comparator which is connected and follows the sign sense signals. The signs
sense amplifier operates as a unity gain follower amplifier in one case and as
an invertinq amplifier in a wind reversal case. The gain is trimmed by a
"lobe trim" resistor. Each lobe of the- wind sensor has equivalent overall
sensitivity. The sensing elements, being nonideal due to manufacturing, etc.,
do not follow a cosine law over all angles to ±90 degrees from normal flow.
To correct for this, a "dither" signal is generated at 400 Hz and injected
into the comparator circuit with the sign sense signal to facilitate switchinq
from lobe to lobe at low wind angles.

The effect of the dither signal near the wind signal axis crossings is a
smoother transition through the zero value reaion of the output waveform.

The output of the switchahle gain amplifier is fed to an inverting amplifier
which has filter characteristics with a nominal frequency cutoff value of
I Hz.
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The gain of the output stage is set at about 0.5 with ±5 V corresponding to
±25 m/s windspeed. Final output is limited by a zener diode to about ±10 V
for overrange wind conditions.

The bridge driver is a differential amplifier followed by an emitter follower
current booster amplifier feeding the top of the probe Wheatstone bridge. The
differential amplifier inputs are connected to the bridge error points through
10 K ohm resistors used to isolate cable capacitance.

If the amplifier is close to balance, for the input voltage and currents, the
bridge driver cannot turn on when power is first supplied, as no potential is
applied to the bridge. To overcome this feature a series voltage divider is
gated to the amplifier reference input to provide an initial offset voltage
which causes a small bridge current to flow. All these circuits are contained
within a closed loop negative feedback system.

Initially, the bridge is unbalanced. Only when current flows through the
sensing elements will the r- sistance value increase so as to cause arid main-
tain bridge balance. It is his characteristic which allows the determination
of the power which must be automatically added to the sensing elements to
equal the power lost by wind induced cooling.

4. TEST SUPPORT

4.1 Meteorological Optical Measurement System

The meteorological optical measurement system (MUMS) is a mobile, self-
contained data collection and reduction system containing analog and digital
subsystems specifically engineered for the measurement and recording of atmo-
spneric meteorological data. The systen uses an HP 2100 computer system as a
controller and is managed by an in-house developed program that samples the
various sensors at preset rates, stores the data, and then reduces and ana-
lyzes the data according to the program requirements. Output format capabili-
ties are raw scatter graphs, time averaged plots, printer, limited strip
chart, and digital tape. During these tests, analog wind data from the co-
located anemometer and the series 200 sensor output were recorded on digital
tape. Other meteorological data simultaneously recorded were atmospheric
pressure, teiperature, refractive index structure coefficient, and dew
point. Plotting of the data plots of the series 200 versus the "baseline"
anemometer was accomplished off-line.

4.2 WSMR Calibration Laboratory and Wind Tunnel Facility

Pressure and temperature laboratory comparison testing was done at the WSMR
calibration laboratory. The series 200 sensor was tested against National
Bureau of Standards (NBS) traceable baseline instrumentation.

Temperature measurements were made in a Tenny "TH-Jr" Model 76H502
temperature/humidity chamber with a calibrated readout using a platinum resis-
tance thermometer sensor. Testing commenced after a 4-hour stabilization
cycle and was cycled low-high-low.

12



Pressure tests were made in a pressure chamber using a Quartz Bourdon pressure
readout calibrated with a dead weight piston gauge. A three-run average test
was performed, cycling low-high-low.

Wind tunnel testing was done at the ASL wind tunnel facility, which is a
closed loop tunnel with a 4- by 4- by 6-foot test area. Velocity capability
of the tunnel is 85 mi/h and is measured by two sensors: below 10 mi/h by a
Pitot-tube-eddy shedding hot wire anemometer, and above 10 mi/h by a
manometer.

5. TEST DESCRIPTION

5.1 Laboratory

The pressure and temperature tests were performed by using standard test
procedures of the WSMR calibration laboratory. Temperature measurements were
made after the test item and chamber stabilized. Pressure measurements were
taken 1 min after a pressure step change was introduced. Wind measurements
were accomplished in the following manner: (1) the sensor was mounted on a
rotating table within the test area and connected to the control electronics
and readout outside the tunnel test area, (2) the wind velocity was stabilized
at one of five tested velocities, and (3) measurements were made as the test
instrument was rotated in 15-degree increments through 360 degree-. The
measured headwind and crosswind, the "true" computed headwind and crosswind,
and the error differential between these values were computed, and the polar
magnitude and phase were plotted.

5.2 Setup for Field Comparisons

Actual field measurement conditions usinq calibrated baseline instruments were
made on the series 200 instrument in conjunction with a multisensor test
period during February and March 1978 at the ASL BOR, Fort Bliss, Texas. Data
were taken from a colocated RM Young UVW anemometer coaligned with the series
200 sensor. The W or vertical component value was not used in these tests,
only the measure U (headwind) and V (crosswind). Data were measured and
recorded, and results were displayed by using the MOMS data collection van
(see paragraph 4.1).

6. DATA COLLECTION AND RESULTS

6.1 Field Test Data

The operations program of the MOMS computer is designed for acceptance and
comparison of data from an unknown sensor versus a known anemometer array.
This array consists of up to 40 crosspath anemometers in a 2 km path length.
Therefore, in comparing one known anemometer against the test series 200
anemometer, the reduction program was not used. However, the data collection
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capability was used for subsequent off-line reduction. Standard deviations of

samples and population were calculated by using:

s = (Samples)

n -I

i=1 i (Population)
/ = n For 3-min averages

6.2 Laboratory/Wind Tunnel Data

The data collected in the calibration laboratory and wind tunnel tests are the
best indicator of the operation of the system since all true values of mea-
sured parameters were controlled. The data observed are as follows.

6.2.1 Pressure

Measured over the range of 18.59 to 32.20 inches of mercury. Calculated
output voltage was based on

Vu Pressure (inHg) - 29.93
out 2.268

where

29.93 = pressure

Vout = zero

2.268 = instrument constant Pmax - Pmin 32.2 - 18.59

tota
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6.2.2 Temperature

The temperature data were collected over a test cycle of -450C to +750C (true
measurement). The output in volts was recorded and the formula: (Vt x 11.0)
+ 15 was used to compute the instrument-sensed temperature, where Vt  voltage

output and 11 = instrument constant derived from: Tmax - Tmin,_ 70 - (-40)
Vout max

6.2.3 Winds

Data were recorded by rotating the instrument in 15-degree increments into the
mean windflow (held constant per test). Data recorded were: true crosswind
(based on a I V = 5 m/s sinusoid response), true headwind (based on a 1 V =
5 m/s sinusoid response), measured headwinds and crosswinds, headwind and
crosswind errors from true, and polar magnitude and polar phase and their
respective errors (this is an indication of true sensor error in wind
magnitude and direction).

Headwind and crosswind errors were derived by:

measured value - "true" value'truevaluex 100 = % error'true" value

Polar coordinates were derived by using a measured crosswind value as ordinate
and measured headwind value as abscissa for deriving vector magnitude (Pv) and
wind angle (0).

6.3 Results of Data Analysis

Results of the tests are shown in the data figures of appendix A. The devia-
tion magnitude of measured from expected values varied primarily according to
the actual windspeed.

In appendix A, the data are presented in the following order: wind tunnel
windspeed tests at five velocities, pressure in three runs, temperature, and
field wind measurement comparison tests.

During field tests, low windspeeds prevailed. Climatologic data of the region
generally indicate that during the time of year that the tests were made, low
windspeeds are to be expected. The tests were made at this time to satisfy
equipment availability, not expected wind conditions.

Appendix B shows daily weather parameters during the data periods.

6.3.1 Windspeed Tests

The windspeed tests performed in the wind tunnel facility are shown in figures
A-i through A-10, representing data taken at five wind velocities. Data
plotted are the true crosswinds and headwinds (i.e., computed expected
values), measured crosswinds and headwinds, and errors between true and mea-
sured for each 15 degrees of sensor rotation.
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The results shown are summarized as follows:

a. Figures A-I and A-2. At 5 m/s, maximum error in crosswind is 63
percent at 60 and 120 degrees rotation, and real value differences are
0.58 V. Headwind maximum error is 33 percent at 0 degrees with 0.36 V real
value difference. Phase error maximum is 15 percent at 60 degrees.

b. Figures A-3 and A-4. At 8.5 m/s, maximum error in crosswinds is 78
percent at 30 and 120 degrees rotation, with real value differences of
0.67 V. Headwind maximum error is 40 percent at 225 degrees, with a real
value difference of 0.49 V. Maximum phase error occurs at 165 degrees.

c. Figures A-5 and A-6. At 13 m/s, maximum crosswind error is 53 per-
cent at 165 degrees rotation, with a real value difference of 0.36 V. Head-
wind maximum error is 35 percent at 300 degrees, with a real value difference
of 0.47 V. Maximum phase error is 14 percent at 30 degrees rotation.

d. Figures A-7 and A-8. At 18 m/s, maximum crosswind error is 66 per-
cent at 165 degrees rotation, with a real value difference of 0.59 V. Maximum
headwind error is 23 percent at 180 degrees with a real value difference of
0.8 V. Maximum phase error is -15 percent at 165 degrees rotation.

e. Figures A-9 and A-10. At 22 m/s, maximum crosswind error is 68
percent at 165 degrees rotation, with a real value difference of 0.77 V.
Headwind maximum error is 26 percent at 195 degrees rotation, with a real
value difference of 1.0 V. Maximum phase error of 15 percent occurs at 165
degrees rotation.

Table 1 is a synopsis of wind error.

TABLE 1. WIND ERRORS

Max Angle Max Angle Max Angle
Crosswind of Headwind of Phase of

Speed Error Attack Error Attack Error Attack
(m/s) ('PIV) (deg) (P/V) (deg) () (deg)

5 63/0.58 60/120 33/0.36 0 15 60

8.5 78/0.67 30/120 40/0.49 225 24 165

13 53/0.36 165 35/0.47 300 14 30

18 66/0.59 165 23/0.8 180 15 165

22 68/0.77 165 26/1.0 195 15 165

6.3.2 Pressure Tests

The pressure tests results are shown in figures A-I through A-14 and indicate
three runs cycled low-high, high-low, and low-high, respectively. Linearity
of the output voltage proportional to pressure is excellent, and hysteresis is
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minimal. However, a bias voltage of about 0.18 V is evident fron the expected
output. This bias can be corrected by internal circuit amplifier trim adjust-
ment (and has been accomplished since the tests were made). A major problen
with the use of this sensor for atmospheric sensing is its wide range of sens-
ing. Because in situ atmospheric pressure changes occur in a snall segment of
the overall sensor output, this sensor is felt to be virtually unusable for
sensing atmospheric pressure, and particularly changes in atmospheric pres-
sure.

6.3.3 Temperature Tests

The temperature test results are shown in figure A-15. Known outputs at the
end points of guaranteed accurate measurements are -5 V at -450C and +5 V at
+75°C. The figure shows that all measured outputs are below the mean expected
value line. Error analysis shows a mean error of 2.70 percent (based on
population). Table 2 is a tabulation of measured values with linear expected
values and percent error of each measured value indicated.

6.3.4 Field Wind Measurements

The field measurements of windspeed measured by the test instrument conpared
to a research-grade anemometer are shown in figures A-16 through A-19. As can
be seen, correlation is indicated.

7. CONCLUSIONS

The series 200 wind sensor, with the optional temperature and pressure sensors
incorporated, is a rugged sensor unit capable of field operation without
degradation that could be attributed to "handling conditions." The wind
sensor operated effectively at higher windspeeds but suffered a lack of accu-
racy at the lower windspeeds (less than 5 m/s). However, by proper circuit
design, utilizing microprocessor technology and connecting the windspeed
output as address lines to an addressable nonvolatile memory containing "true
values, the system can be used effectively.

Using a 10-bit A/D conversion scheme, resolution of parameters are:

Windspeed: t 0.049 m/s

Wind direction: + 0.7 deg

Temperature: ± 0.23 0C

Pressure: t 0.0266 psia or 1.9 mbar MSL

A 12-bit scheme will yield:

Windspeed: t 0.0122 m/s

Wind direction: ± 0.176 deg

Temperature: t 0.0590C

Pressure: ± 0.0067 psia or 0.46 mhar MSL

assuming no other system transfer losses.
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TABLE 2. MEASURED AND LINEAR EXPECTED VALUES AND
PERCENT ERROR OF MEASURED VALUE

Linear Percent
Temp 0C Expected Measured Difference Error

-45.23 -5.019 -5.004 +0.015 0.15
-42.15 -4.762 -4.849 -0.087 0.87
-39.51 -4.540 -4.791 -0.251 2.51
-39.06 -4.503 -4.774 -0.271 2.71
-38.61 -4.466 -4.725 -0.259 2.59
-36.62 -4.303 -4.614 -0.311 3.11
-36.38 -4.283 -4.591 -0.308 3.08
-36.27 -4.274 -4.556 -0.282 2.82
-34.30 -4.111 -4.421 -0.310 3.10
-34.06 -4.091 -4.383 -0.292 2.92
-30.79 -3.816 -4.169 -0.353 3.53
-30.72 -3.810 -4.159 -0.349 3.49
-24.71 -3.306 -3.740 -0.434 4.34
-24.01 -3.249 -3.722 -0.473 4.73
-20.30 -2.945 -3.461 -0.516 5.16
-20.07 -2.926 -3.402 -0.476 4.76
-20.01 -2.921 -3.342 -0.421 4.21
-15.58 -2.549 -3.030 -0.481 4.81
-15.25 -2.521 -2.960 -0.439 4.39
-15.17 -2.514 -2.930 -0.416 4.16
-12.30 -2.273 -2.724 -0.451 4.51
-12.25 -2.269 -2.713 -0.444 4.44
-7.72 -1.893 -2.344 -0.451 4.51
7.63 -1.886 -2.308 -0.422 4.22
-2.75 -1.481 -1.589 -0.108 1.08
-1.83 -1.404 -1.552 0.148 1.48
-0.84 -1.321 -1.445 -0.124 1.24
1.22 -1.148 -1.313 -0.165 1.65
5.47 -0.791 -1.006 -0.215 2.15
11.22 -0.386 -0.566 -0.180 1.80
16.42 -0.081 -0.004 +0.077 0.77
19.15 0.301 0.261 -0.040 0.40
21.61 0.552 0.444 -0.108 1.08
22.10 0.592 0.454 -0.138 1.38
22.42 0.618 0.476 -0.142 1.42
23.10 0.674 0.530 -0.144 1.44
23.47 0.705 0.564 -0.141 1.41
26.26 0.936 0.770 -0.166 1.66
28.12 1.092 0.933 -0.159 1.59
34.90 1.662 1.367 -0.295 2.95
39.61 2.048 1.730 -0.318 3.18
44.58 2.465 2.111 -0.354 3.54
56.36 3.444 2.958 -0.486 4.86
62.99 3.999 3.763 -0.236 2.36
68.55 4.463 4.355 -0.108 1.08
75.61 5.051 5.002 -0.049 0.49
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APPENDIX B
DAILY WEATHER PARAMETERS FEBRUARY 1980

Day Temp. (OF) Winds
Feb Avg Fastest Peak Gust
78 Max Mn Avg Dep From Norm Speed mi/h Dir mi/h Dir Time

16 55 35 45 -4 14.7 28 3000 44 NW 1954

22 63 29 46 -4 3.1 9 0100 12 SW 1306

39 PA&Z .4 r1l
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